Synthetic and Spectroscopic Studies on N-(i,j-Disubstituted Phenyl)-4-Substituted Benzenesulphonamides, 4-X'C $_6$ H $_4$ SO $_2$ NH(i,j-X $_2$ C $_6$ H $_3$), where X' = H, CH $_3$, C $_2$ H $_5$, F, Cl or Br; i, j = 2, 3; 2, 4; 2, 5; 2, 6 or 3, 4; and X = CH $_3$ or Cl

Mahesha Shetty and B. Thimme Gowda

Department of Post-Graduate Studies and Research in Chemistry, Mangalore University, Mangalagangothri-574 199, Mangalore, India

Reprint requests to Prof. B. T. G.; Fax: 91 824 2287 367; E-mail: gowdabt@yahoo.com

Z. Naturforsch. 60a, 113 – 120 (2005); received September 16, 2004

Fifty four N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides of the general formula 4-X'C₆H₄SO₂NH(i,j-X₂C₆H₃), where X' = H, CH₃, C₂H₅, F, Cl or Br; i, j = 2, 3; 2, 4; 2, 5; 2, 6 or 3, 4; and X = CH₃ or Cl, are prepared and characterized and their infrared, ¹H and ¹³C NMR spectra in solution are studied. The N-H stretching vibrations v_{N-H} absorb in the range 3305 – 3205 cm⁻¹, while the asymmetric and symmetric SO₂ vibrations vary in the ranges 1377 – 1307 cm⁻¹ and 1184 – 1128 cm⁻¹, respectively. The N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides show C-S, S-N and C-N stretching vibrations in the ranges 844 – 800 cm⁻¹, 945 – 891 cm⁻¹ and 1309 – 1170 cm⁻¹, respectively. The compounds do not exhibit particular trends in the variation of these frequencies on substitution either at *ortho* or *meta* positions with either a methyl group or Cl. The observed ¹H and ¹³C chemical shifts of

$$X'$$
 $\underbrace{\begin{array}{c}3' \ 2'\\ 5' \ 6'\end{array}}_{5' \ 6'}$ $\underbrace{\begin{array}{c}H\\ 2\ 3\\ 1\\ 6\ 5\end{array}}_{4}$ $\underbrace{\begin{array}{c}3' \ 2'\\ 4\\ 5' \ 6'\end{array}}_{5}$

are assigned to protons and carbon atoms of the two benzene rings. Incremental shifts of the ring protons and carbon atoms due to $-SO_2NH(i,j-X_2C_6H_3)$ groups in $C_6H_5SO_2NH(i,j-X_2C_6H_3)$ and $4-X'C_6H_4SO_2NH-$ groups in $4-X'C_6H_4SO_2NH(C_6H_5)$ are computed and employed to calculate the chemical shifts of the ring protons and carbon atoms in the substituted compounds $4-X'C_6H_4SO_2NH(i,j-X_2C_6H_3)$. The different methods of calculation lead to almost the same values in most cases and agree well with the observed chemical shifts, indicating the validity of the principle of additivity of the substituent effects with chemical shifts in these compounds.

Key words: IR; ¹H and ¹³C NMR; N-(Disubstituted phenyl)-4-substituted Benzenesulphonamides.

1. Introduction

The chemistry of sulphonamides and their derivatives is of interest due to their distinct physical, chemical and biological properties. Hence we are interested in the synthetic, spectroscopic, structural and kinetic aspects of these compounds [1-18]. We have recently reported the synthesis, characterization, infrared and NMR spectral properties of N-(2-/3-/4-sub-stituted phenyl)-4-substituted benzenesulphonamides of the general formula, 4-X'C₆H₄SO₂NH(2-/3-/4-XC₆H₄), where X' or X = H, CH₃, C₂H₅, F, Cl or Br [18]. This paper reports the synthesis, characterization, infrared, 1 H and 13 C NMR spectral proper-

ties of fifty four N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides of the general formula 4-X'C $_6$ H $_4$ SO $_2$ NH(i,j-X $_2$ C $_6$ H $_3$), where X' = H, CH $_3$, C $_2$ H $_5$, F, Cl or Br; i,j = 2,3; 2,4; 2,5; 2,6 or 3,4 and X = CH $_3$ or Cl.

2. Experimental

2.1. Materials and Methods

The preparations of all the fifty four N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides (Table 1) involved two steps: (i) chlorosulphonation of substituted benzenes and (ii) conversion of the re-

 $0932-0784 / 05 / 0100-0113 \$ 06.00 \textcircled{c} 2005 \ Verlag \ der \ Zeitschrift \ für \ Naturforschung, \ Tübingen \cdot http://znaturforsch.com/reschung/r$

Table 1. Melting points of N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides, $4-X^{\circ}C_6H_4SO_2NH(i,j-X_2C_6H_3)$.

$X_2C_6H_3$).		
where X',	Systematic names of the compounds	M. p.
$i,j-X_2 =$		[°C]
$H, 2,3-(CH_3)_2$	N-(2,3-dimethylphenyl)-benzenesulphonamide	86
$H, 2,4-(CH_3)_2$	N-(2,4-dimethylphenyl)-benzenesulphonamide	110
H, 2,5-(CH ₃) ₂	N-(2,5-dimethylphenyl)-benzenesulphonamide	50
H, 2,6-(CH ₃) ₂	N-(2,6-dimethylphenyl)-benzenesulphonamide	80
H, 2,3-Cl ₂	N-(2,3-dichlorophenyl)-benzenesulphonamide	99
H, 2,4-Cl ₂	N-(2,4-dichlorophenyl)-benzenesulphonamide	103
H, 2,5-Cl ₂	N-(2,5-dichlorophenyl)-benzenesulphonamide	116 92
H, 2,6-Cl ₂ H, 3,4-Cl ₂	N-(2,6-dichlorophenyl)-benzenesulphonamide N-(3,4-dichlorophenyl)-benzenesulphonamide	67
CH ₃ , 2,3-(CH ₃) ₂	N-(2,3-dimethylphenyl)-4-methylbenzene-	136
3, -,- (3/2	sulphonamide	
CH_3 , 2,4- $(CH_3)_2$	N-(2,4-dimethylphenyl)-4-methylbenzene-	58
	sulphonamide	
CH_3 , 2,5- $(CH_3)_2$	N-(2,5-dimethylphenyl)-4-methylbenzene-	40
CH- 26 (CH-)-	sulphonamide N-(2,6-dimethylphenyl)-4-methylbenzene-	82
CH_3 , 2,6- $(CH_3)_2$	sulphonamide	02
CH ₃ , 2,3-Cl ₂	N-(2,3-dichlorophenyl)-4-methylbenzene-	105
3, , 2	sulphonamide	
CH ₃ , 2,4-Cl ₂	N-(2,4-dichlorophenyl)-4-methylbenzene-	98
	sulphonamide	
CH_3 , 2,5- Cl_2	N-(2,5-dichlorophenyl)-4-methylbenzene-	121
CII 2 C CI	sulphonamide	C 0
CH_3 , 2,6- Cl_2	N-(2,6-dichlorophenyl)-4-methylbenzene-	68
CH ₃ , 3,4-Cl ₂	sulphonamide N-(3,4-dichlorophenyl)-4-methylbenzene-	78
C113, 3,4-C12	sulphonamide	70
C ₂ H ₅ , 2,3-(CH ₃) ₂	N-(2,3-dimethylphenyl)-4-ethylbenzene-	92
-23, -,- (3/2	sulphonamide	
C_2H_5 , 2,4-(CH_3) ₂	N-(2,4-dimethylphenyl)-4-ethylbenzene-	98
	sulphonamide	
C_2H_5 , 2,5-(CH_3) ₂	N-(2,5-dimethylphenyl)-4-ethylbenzene-	52
G ** A 6 (G**)	sulphonamide	100
C_2H_5 , 2,6-(CH_3) ₂	N-(2,6-dimethylphenyl)-4-ethylbenzene-	138
C-H- 22 Cl-	sulphonamide N-(2,3-dichlorophenyl)-4-ethylbenzene-	79
$C_2H_5, 2,3-Cl_2$	sulphonamide	19
C ₂ H ₅ , 2,4-Cl ₂	N-(2,4-dichlorophenyl)-4-ethylbenzene-	93
C2113, 2, 1 C12	sulphonamide	75
C ₂ H ₅ , 2,5-Cl ₂	N-(2,5-dichlorophenyl)-4-ethylbenzene-	115
-2 3, , 2	sulphonamide	
C ₂ H ₅ , 2,6-Cl ₂	N-(2,6-dichlorophenyl)-4-ethylbenzene-	64
	sulphonamide	
C_2H_5 , 3,4- Cl_2	N-(3,4-dichlorophenyl)-4-ethylbenzene-	88
	sulphonamide	
$F, 2,3-(CH_3)_2$	N-(2,3-dimethylphenyl)-4-fluorobenzene-	78
E 2.4 (CH.)	sulphonamide	140
F, 2,4-(CH ₃) ₂	N-(2,4-dimethylphenyl)-4-fluorobenzene- sulphonamide	140
F, 2,5-(CH ₃) ₂	N-(2,5-dimethylphenyl)-4-fluorobenzene-	112
1, 2,5 (0113)2	sulphonamide	
F, 2,6-(CH ₃) ₂	N-(2,6-dimethylphenyl)-4-fluorobenzene-	122
, , , , ,,,,	sulphonamide	
F, 2,3-Cl ₂	N-(2,3-dichlorophenyl)-4-fluorobenzene-	119
	sulphonamide	
F, 2,4-Cl ₂	N-(2,4-dichlorophenyl)-4-fluorobenzene-	75
F 2.5 Cl	sulphonamide	1.5
F, 2,5-Cl ₂	N-(2,5-dichlorophenyl)-4-fluorobenzene-	117
E 26 Cl	sulphonamide N (2.6 dichlorophonyl) 4 fluorophongona	72
F, 2,6-Cl ₂	N-(2,6-dichlorophenyl)-4-fluorobenzene- sulphonamide	73
F, 3,4-Cl ₂	N-(3,4-dichlorophenyl)-4-fluorobenzene-	76
1, 5, 1 01/	sulphonamide	70

sulting 4-substituted benzenesulphonylchlorides into N-(i,j-disubstituted phenyl)-4-substituted benzenesul-

Table 1 (continued).

where X',	Systematic names of the compounds	M. p.
$i,j-X_2 =$		[°C]
Cl, 2,3-(CH ₃) ₂	N-(2,3-dimethylphenyl)-4-chlorobenzene- sulphonamide	76
Cl, 2,4-(CH ₃) ₂	N-(2,4-dimethylphenyl)-4-chlorobenzene- sulphonamide	36
Cl, 2,5-(CH ₃) ₂	N-(2,5-dimethylphenyl)-4-chlorobenzene- sulphonamide	52
Cl, 2,6-(CH ₃) ₂	N-(2,6-dimethylphenyl)-4-chlorobenzene- sulphonamide	86
Cl, 2,3-Cl ₂	N-(2,3-dichlorophenyl)-4-chlorobenzene- sulphonamide	99
Cl, 2,4-Cl ₂	N-(2,4-dichlorophenyl)-4-chlorobenzene- sulphonamide	107
Cl, 2,5-Cl ₂	N-(2,5-dichlorophenyl)-4-chlorobenzene- sulphonamide	143
Cl, 2,6-Cl ₂	N-(2,6-dichlorophenyl)-4-chlorobenzene- sulphonamide	86
Cl, 3,4-Cl ₂	N-(3,4-dichlorophenyl)-4-chlorobenzene- sulphonamide	89
Br, 2,3-(CH ₃) ₂	N-(2,3-dimethylphenyl)-4-bromobenzene- sulphonamide	114
Br, 2,4-(CH ₃) ₂	N-(2,4-dimethylphenyl)-4-bromobenzene- sulphonamide	42
Br, 2,5-(CH ₃) ₂	N-(2,5-dimethylphenyl)-4-bromobenzene- sulphonamide	86
Br, 2,6-(CH ₃) ₂	N-(2,6-dimethylphenyl)-4-bromobenzene- sulphonamide	150
Br, 2,3-Cl ₂	N-(2,3-dichlorophenyl)-4-bromobenzene- sulphonamide	122
Br, 2,4-Cl ₂	N-(2,4-dichlorophenyl)-4-bromobenzene- sulphonamide	133
Br, 2,5-Cl ₂	N-(2,5-dichlorophenyl)-4-bromobenzene-	132
Br, 2,6-Cl ₂	sulphonamide N-(2,6-dichlorophenyl)-4-bromobenzene-	103
Br, 3,4-Cl ₂	sulphonamide N-(3,4-dichlorophenyl)-4-bromobenzene- sulphonamide	102

phonamides by treating the former with the i,j-disubstituted anilines, by methods similar to the ones described in our earlier papers [14, 18]. The solid N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides so prepared were recrystallized to constant melting points from dilute ethanol. The purity of all compounds was checked by determining their melting points (Table 1).

2.2. Spectral Measurements

Infrared spectral measurements were carried out on a JASCO-430 (Japan) FT-IR spectrometer. The resolution was set to $4 \, \mathrm{cm}^{-1}$, and the scanning range was from $400-4000 \, \mathrm{cm}^{-1}$. The spectra were measured in the solid state as pressed KBr pellets (13 mm).

The ¹H NMR spectra of all N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides were measured on a BRUKER Ac 300F 300 MHz FT-NMR spectrometer. The spectra were recorded in CDCl₃ and DMSO with tetramethylsilane (Me₄Si) as internal standard. The experimental conditions employed were as follows: spectral frequency

(SF) 300.134 MHz, sweep width (SW) 6024.096, pulse width (PW) 8.0, relaxation delay (RD) 1.0 s, acquisition time (AQ) 1.360 s, receiver gain (RG) 10, decoupling power (DP) 63L CPD, filter to suppress noise (LB) 0.0, reference value (SR) 4125.36 ppm for H₂O internally.

The ¹³C NMR spectra of all compounds were measured in CDCl₃ and DMSO with tetramethylsilane as the external reference standard. The following experimental conditions were employed in the ¹³C spectral measurement: SF 75.469 MHz, SW 22727.273, PW 5.0, RD 1.0 s, AQ 0.360 s, RG 400, DP 14H CPD, LB 6.0, SR 701.89 ppm for DMSO at 39.5 ppm externally.

3. Results and Discussion

3.1. Infrared Spectra

The selected absorption frequencies of all the 54 N-(i,j-disubstituted phenyl)-4-substituted benzenesul-phonamides have been assigned in conformity with the literature values for similar compounds [5, 6, 8, 9, 13 – 15, 18 – 21], considering the fact that the precise frequency at which a specific group absorbs is dependent on its environment within the molecule and on its physical state.

The maximum and minimum frequencies at which the N-H stretching vibrations, v_{N-H} , of N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides absorb are 3305 cm⁻¹ and 3205 cm⁻¹, respectively, with most of the absorptions being in the range 3272 – 3248 cm⁻¹. These conform with the N-H symmetric stretching vibrations in the range 3305-3199 cm⁻¹ observed for N-(2-/3-/4-substituted phenyl)-4-substituted benzenesulphonamides [14, 18]. The maximal and minimal asymmetric SO₂ stretching absorptions in N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides occur at 1377 cm⁻¹ and 1307 cm⁻¹, respectively, with most of the values in the range, 1341-1325 cm⁻¹ compared to the range of 1377-1309 cm⁻¹ observed for the N-(2-/3-/4-substituted phenyl)-4-substituted benzenesulphonamides, whereas the symmetric SO₂ stretching vibrations of N-(i,jdisubstituted phenyl)-4-substituted benzenesulphonamides appear in the general range 1184-1128 cm⁻¹. with most of them absorbing in the range of 1174- 1151 cm^{-1} , compared to the range $1177 - 1148 \text{ cm}^{-1}$ observed for the N-(2-/3-/4-substituted phenyl)-4-substituted benzenesulphonamides [14, 18]. These ranges

Table 2. Comparison of N-H stretching infrared absorption frequencies (cm⁻¹) of N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides with N-(i-substituted phenyl)-4-substituted benzenesulphonamides.

	4-X'	C ₆ H ₄ SO ₂ N	NH(i-XC ₆ F	I ₄ / i,j-X ₂ C	(6H ₃) when	e X' =
	H	CH_3	C_2H_5	F	Cl	Br
i-X						
H	3284.2w	3254.3w	3278.4w	3218.6s	3259.1m	3257.2m
2-CH ₃	3216.7m	3268.8s	3266.8m	3275.5s	3284.2w	3266.8s
$3-CH_3$	3234.0s	3230.2w	-	3258.1s	3266.8m	3264.9s
4-CH ₃	3270.7s	3234.0w	3263.9s	3270.7s	3233.1m	3234.0s
2-C1	3253.3s	3263.9w	3268.8s	3255.3s	3272.6m	3246.6s
3-C1	3199.3s	3246.6m	3248.5s	3285.1s	3258.1s	3236.0s
4-C1	3284.2w	3305.4s	3262.0m	3284.2m	3259.1s	3258.1w
$i,j-X_2$						
$2,3-(CH_3)_2$	3209.0m	3249.5s	3263.0m	3247.5s	3247.5w	3205.1w
$2,4-(CH_3)_2$	3255.3m	3263.0w	3263.0m	3268.0m	3284.2w	3263.0m
$2,5-(CH_3)_2$	3264.9w	3263.9s	3263.0m	3267.8s	3267.8m	3259.1s
$2,6-(CH_3)_2$	3305.4s	3265.9m	3271.6s	3267.8s	3288.0s	3290.0s
2,3-Cl ₂	3263.0m	3209.9s	3267.8m	3263.0m	3259.1m	3256.2s
2,4-Cl ₂	3290.9s	3260.1w	3284.2w	3249.5s	3269.7w	3242.7w
2,5-Cl ₂	3284.2m	3264.9m	3261.0m	3263.0m	3263.9s	3261.0w
2,6-Cl ₂	3271.6m	3258.1w	3263.0m	3255.3s	3263.0m	3263.0s
3,4-Cl ₂	3263.0m	3255.3w	3259.1s	3239.8m	3260.1s	3236.0w

s = strong, m = medium, and w = weak

Table 3. Comparison of S=O (asym) and S=O (sym) infrared absorption frequencies (cm^{-1}) of N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides with N-(i-substituted phenyl)-4-substituted benzenesulphonamides.

$4-X'C_6H_4SO_2NH(i-XC_6H_4/i,j-X_2C_6H_3)$ where $X' =$								
	H	CH_3	C_2H_5	F	Cl	Br		
i-X			S=O	(asym)				
H	1376.9s	1373.1s	1373.0s	1337.4s	1343.2m	1374.0s		
2-CH ₃	1326.8s	1318.1s	1330.6m	1331.6s	1376.0m	1332.6s		
3-CH ₃	1308.5s	1330.6s	-	1327.8m	1328.7m	1331.6s		
$4-CH_3$	1318.1m	1334.5m	1328.7s	1339.3m	1339.3s	1340.3s		
2-C1	1334.5m	1373.1s	1318.1s	1326.8s	1342.2s	1374.0s		
3-C1	1314.3m	1331.6m	1328.7m	1340.3s	1336.4m	1332.6s		
4-Cl	1376.0m	1327.8s	1326.8m	1332.6m	1332.6m	1374.0s		
$i,j-X_2$								
$2,3-(CH_3)_2$	1324.9w	1328.7s	1326.8m	1329.7m	1328.7m	1326.8m		
$2,4-(CH_3)_2$	1330.6m	1330.6m	1334.5m	1332.6s	1332.6m	1336.4m		
$2,5-(CH_3)_2$	1328.7w	1330.6s	1332.6m	1336.4s	1331.6m	1331.6s		
$2,6-(CH_3)_2$	1327.8s	1324.9m	1323.9s	1329.7s	1322.9s	1324.9s		
2,3-Cl ₂	1329.7w	1306.5m	1334.5s	1329.7m	1338.4w	1336.4m		
2,4-Cl ₂	1324.9s	1373.1m	1376.9m	1328.7m	1341.3m	1374.0s		
2,5-Cl ₂	1334.5s	1341.3m	1343.2s	1340.3s	1348.0m	1374.0s		
2,6-Cl ₂	1337.4m	1374.0s	1334.5m	1330.6s	1336.4m	1330.6s		
3,4-Cl ₂	1326.8m	1330.6s	1331.6s	1335.5m	1325.8s	1373.1s		
i-X			S=O	(sym)				
H	1162.9s	1173.5s	1174.4s	1152.3s	1161.9s	1160.9s		
$2-CH_3$	1154.2s	1148.4s	1163.8s	1156.1s	1163.8m	1164.8s		
3-CH ₃	1154.2s	1172.5s	-	1154.2s	1156.1s	1154.2s		
4-CH ₃	1155.2s	1174.4s	1159.0s	1152.3s	1164.8s	1165.8s		
2-C1	1168.7s	1173.5s	1148.4s	1155.2s	1167.7s	1166.7s		
3-C1	1155.6s	1161.9s	1158.0s	1177.3s	1160.9s	1150.3s		
4-Cl	1163.8s	1160.9s	1157.1s	1161.9s	1159.0s	1160.9s		
i,j-X ₂								
$2,3-(CH_3)_2$	1154.2s	1160.0s	1157.1s	1147.4s	1166.7s	1151.3s		
$2,4-(CH_3)_2$	1157.1s	1160.9s	1160.9s	1153.2s	1161.9s	1166.7s		
$2,5-(CH_3)_2$	1155.2s	1170.6s	1128.2s	1169.6s	1176.4s	1173.5s		
$2,6-(CH_3)_2$	1160.9s	1157.1s	1157.1s	1152.3s	1157.1s	1158.0s		
2,3-Cl ₂	1168.7s	1155.2s	1165.8s	1168.7s	1166.7s	1167.7s		
2,4-Cl ₂	1158.0s	1172.5s	1162.9s	1159.0s	1167.7s	1167.7m		
2,5-Cl ₂	1162.9s	1170.8s	1167.9s	1171.5s	1184.1s	1166.7s		
2,6-Cl ₂	1167.7s	1160.9s	1160.9s	1157.1s	1166.7s	1160.9s		
3,4-Cl ₂	1157.1s	1166.7s	1173.5s	1169.6s	1160.9s	1172.5s		

s = strong, m = medium, and w = weak.

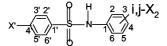


Table 4. Observed chemical shifts $(\delta, \text{ ppm})$ of various aromatic and other protons in N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides.

	H-2	H-3	H-4	H-5	H-6	H-2',6'	H-3',5'	H-4'	N-H	Alkyl H
					X'	= H				
$i,j-X_2 =$										
2,3-(CH ₃) ₂	-	-	6.96m	7.05m	7.40m	7.74d	7.55t	7.59d	7.26	2.20, 1.94
2,4-(CH ₃) ₂	-	6.90t	-	7.14d	7.39m	7.94d	7.55m	7.72d	6.62	2.24, 1.93
2,5-(CH ₃) ₂	-	6.96d	6.88d	7 104	7.40m	7.97m	7.71t	7.93d	6.46	2.27, 1.89
2,6-(CH ₃) ₂	-	7.10t	6.98d	7.10t	7 424	7.72t	7.46d	7.56t	6.39	2.10, 1.94
2,3-Cl ₂	_	- 7.464	7.12m -	7.20m	7.43t 7.52d	7.79t 7.95d	7.55m	7.60d	7.33	_
2,4-Cl ₂ 2,5-Cl ₂	_	7.46d 7.14d	7.00d	7.46d -	7.32u 7.41m	7.93d 7.94t	7.43d 7.67d	7.49d 7.80d	7.54 7.31	_
2,6-Cl ₂	_	7.14d 7.30d	7.00d 7.15t	7.30d		7.97d	7.82m	7.93d	7.27	_
3,4-Cl ₂	7.42t	-	-	7.24t	7.55t	7.97m	7.57t	7.85m	-	_
3,. 612	7.1.20			7.2.0		: CH ₃	7.570	7100111		
2.2 (CV)			5.00	7 .00			5.21		- 17	2 20 2 20 1 0 5
2,3-(CH ₃) ₂	_	-	6.98m	7.00m	7.03	7.60d	7.21		6.47	2.39, 2.20, 1.96
2,4-(CH ₃) ₂	-	6.90t	- 061	7.12d	7.19m	7.80d	7.60d		6.59	2.60, 2.24, 1.95
2,5-(CH ₃) ₂	-	6.94d	6.86d	- 064	7.16m –	7.63d 7.59m	7.23m 7.25m		6.63 6.69	2.59, 2.38, 1.92
2,6-(CH ₃) ₂ 2,3-Cl ₂	_	6.96t -	7.03m 7.11d	6.96t 7.19d	7.27d	7.66d	7.23m 7.32m		9.42	2.53, 2.36, 2.02 2.34
2,3-Cl ₂ 2,4-Cl ₂	_	7.18d	7.11 u –	7.13d 7.23d	7.27d 7.35t	7.65d	7.32m 7.44t		7.10	2.37
2,5-Cl ₂	_	7.00d	6.97d	T.23d	7.17d	7.68t	7.26d		-	2.37
2,6-Cl ₂	_	7.46d	-	7.46d	-	7.90m	7.85d		_	1.93
3,4-Cl ₂	7.20t	-	_	6.96d	7.00d	7.73d	7.25t		_	2.35
-, - 2						C_2H_5				
22/077							T.00			0.55.010.105.155
2,3-(CH ₃) ₂	-	- 00.1	6.94t	6.99d	7.02d	7.64	7.22		6.88	2.67, 2.19, 1.95, 1.22
2,4-(CH ₃) ₂	-	6.89d	- 07.1	6.93t	7.14d	7.63d	7.24d		6.68	2.67, 2.24, 1.95, 1.22
2,5-(CH ₃) ₂	-	6.94d	6.87d	7.004	7.14d	7.63d	7.25d		6.44	2.71, 2.26, 1.92, 1.25
2,6-(CH ₃) ₂	-	7.08d -	6.98d 6.94t	7.08d 7.14t	7 254	7.61d 7.86d	7.26t 7.42d		6.25 10.11	2.94, 2.69, 2.04, 1.24 2.52, 1.94
2,3-Cl ₂ 2,4-Cl ₂	_	7.16t	0.9 4 t -	7.14t 7.16t	7.25d 7.23t	7.65d	7.42d 7.32t		9.59	2.63, 1.19
2,4-Cl ₂ 2,5-Cl ₂	_	7.15d	6.94d	7.10t -	7.25d	7.73d	7.52t 7.51m		9.10	2.61, 1.16
2,6-Cl ₂	_	7.13d 7.21d	7.11d	7.21d	7.23u -	7.82d	7.70t		9.54	2.64, 1.11
3,4-Cl ₂	7.22d	- /.ZIG	7.11d -	7.12d	7.17d	7.76d	7.46d		10.35	2.60, 1.15
5,. 612	7.224			71124		= F	7.1.00		10.00	2.00, 1.15
$2,3-(CH_3)_2$	-	_	6.99d	7.05d	7.13t	7.76d	7.70d		6.59s	2.21, 1.97
2,4-(CH ₃) ₂	-	6.92d	-	7.06t	7.10d	7.75t	7.70t		6.59s	2.25, 1.97
2,5-(CH ₃) ₂	-	6.98d	6.90d	7 00 1	7.07d	7.74m	7.70m		6.32s	2.22, 1.91
2,6-(CH ₃) ₂ 2,3-Cl ₂	_	7.09d -	7.02d 7.09d	7.09d 7.15d	7.22d	7.76t 7.81m	7.70t 7.86m		6.49s 7.40s	2.25, 1.81
2,3-Cl ₂ 2,4-Cl ₂	_	7.11d	7.09u -	7.13d 7.13d	7.22d 7.18d	7.40d	7.78m		9.16s	_
2,5-Cl ₂	_	7.11d	7.00d	7.13d -	7.16d 7.24d	7.85d	7.90d		10.10s	_
2,6-Cl ₂	_	7.16d	7.04d	7.16d	-	7.82d	7.87d		8.30	_
3,4-Cl ₂	7.22t	_	_	7.13d	7.16d	7.93t	7.88t		10.58s	_
-,2						= Cl				
2.2 (CH.)			6.00.1	7.01.			7.40.1		6.40	2.22 1.07
2,3-(CH ₃) ₂	-	- 044	6.99d	7.01t	7.39t	7.63t	7.48d		6.42s	2.22, 1.97
2,4-(CH ₃) ₂ 2,5-(CH ₃) ₂	_	6.94d 6.96d	- 6.90d	7.10d -	7.39d 7.38t	7.86d 7.87d	7.48d 7.63t		6.38s	2.27, 1.97 2.23, 1.92
2,5-(CH ₃) ₂ 2,6-(CH ₃) ₂	_	6.96d 6.98d	6.90d 7.07d	6.98d	7.381	7.87d 7.67t	7.63t 7.47d		6.36s 6.67s	2.23, 1.92
2,3-Cl ₂	_	- -	7.67d	7.63d	7.66d	7.80d	7.47d 7.78t		-	
2,4-Cl ₂	_	7.11d	7.07 u	7.03d 7.18d	7.20d	7.50d	7.76t 7.41t		9.45s	_
2,5-Cl ₂	_	7.20d	6.92d	- · · · · ·	7.25d	7.90d	7.75d		-	_
2,6-Cl ₂	_	7.59t	7.49d	7.59t	-	8.01d	7.97t		7.91s	_
3,4-Cl ₂	7.24d	-	_	7.09d	7.15d	7.89m	7.50t		10.25s	_
-						= Br				
2.2 (CH.)			6 004	6.074			7.414		0.10c	2.22 1.00
2,3-(CH ₃) ₂ 2,4-(CH ₃) ₂	_	- 6.90t	6.88d	6.97d 6.96t	7.06d 7.09t	7.66t 7.78d	7.41d		9.19s	2.23, 1.99 2.24, 2.0
2,4-(CH ₃) ₂ 2,5-(CH ₃) ₂	_	6.96d	6.89d	0.90t -		7.78d 7.78d	7.57d 7.64d		7.25s 7.12s	2.24, 2.0 2.26, 1.94
2,6-(CH ₃) ₂ 2,6-(CH ₃) ₂	_	7.09d	7.03d	7.09d	_	7.77t	7.55d		6.32s	2.25, 1.74
2,3-Cl ₂	_	7.09u -	7.03d 7.13d	7.09d 7.16d	7.20d	7.77d	7.63t		-	
2,4-Cl ₂	_	7.20t	7.13 u	7.10d 7.24d	7.20d 7.31t	7.60d	7.39d		9.83s	_
2,5-Cl ₂	_	7.12d	7.09d	-	7.24t	7.82d	7.67t		9.63s	_
2,6-Cl ₂	_	7.57d	7.54d	7.57d	-	7.90d	7.83d		11.64s	_
3,4-Cl ₂	7.36d	-	-	7.10d	7.12d	7.82d	7.66d		10.52s	-

agree also with the assignments of bands in other substituted benzenesulphonamides. The N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides show C-S, S-N and C-N stretching vibrations in the ranges 844–800 cm⁻¹, 945–891 cm⁻¹ and 1309–1170 cm⁻¹, respectively. These absorptions in N-(2-/3-/4-substituted phenyl)-4-substituted benzenesulphonamides were observed in the ranges, 838–795 cm⁻¹, 945–893 cm⁻¹ and 1310–1168 cm⁻¹, respectively. The assignment of other frequencies to various modes of vibrations of the ring are similar to those in aryl-sulphonamides [5], N-haloarylsulphonamides [6, 8, 9] and other aromatic organic compounds [19, 20].

The $v_{\rm N-H}$, $v_{\rm S=O(asym)}$, and $v_{\rm S=O(sym)}$ vibrations of all the N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides are compared with those of N-(2-/3-/4-substituted phenyl)-4-substituted benzenesulphonamides [14, 18] (Tables 2 and 3). The variations of these absorption frequencies with substitution in the phenyl ring in N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides had no particular trends, with either electron withdrawing or electron donating groups.

3.2. ¹H NMR Spectra

¹H chemical shifts of aromatic and alkyl protons of all N-(i,j-disubstituted phenyl)-4-substituted benzene-sulphonamides are shown in Table 4. The aromatic protons and carbon atoms were numbered as shown in the following general structure:

$$x' - \underbrace{ \begin{cases} 3' \ 2' & \\ 5' \ 6' & \\ \end{cases}}_{1} + \underbrace{ \begin{cases} H & 2 \ 3 \ i,j-X_2 \\ 6 \ 5 \\ \end{cases}}_{4}$$

The various chemical shifts were assigned to the protons of two benzene rings in line with similar compounds [5, 14, 15, 19–25]. 1H chemical shifts of benzene and substituted benzenes were measured under identical conditions. Further, the incremental shifts due to $-SO_2NH(i,j-X_2C_6H_3)$ groups in the compounds with the formula $C_6H_5SO_2NH(i,j-X_2C_6H_3)$ and $4-X'C_6H_4SO_2NH$ - groups in the compounds of the type $4-X'C_6H_4SO_2NH(C_6H_5)$ were computed (Table 5) and used to calculate the 1H chemical shifts of the substituted compounds $4-X'C_6H_4SO_2NH(i,j-X_2C_6H_3)$ as described below.

The incremental shifts of aromatic protons in N-(substituted phenyl)-benzenesulphonamides due to - SO₂NH(i,j-X₂C₆H₃) [where i,j-X₂= 2,3-(CH₃)₂, 2,4-

Table 5. Incremental shifts (ppm) of aromatic protons due to $-SO_2NH(i,j-X_2C_6H_3)$ groups in $C_6H_5SO_2NH(i,j-X_2C_6H_3)$ and $4-X'C_6H_4SO_2NH-$ groups in $4-X'C_6H_4SO_2NH(C_6H_5)$.

Group	H-2',6'	H-3',5'	H-4'
-SO ₂ NHC ₆ H ₅	0.67	0.22	0.52
$-SO_2NH[(2,3-(CH_3)_2C_6H_3]$	0.45	0.26	0.30
$-SO_2NH[(2,4-(CH_3)_2C_6H_3]$	0.65	0.26	0.43
$-SO_2NH[(2,5-(CH_3)_2C_6H_3]$	0.68	0.42	0.64
$-SO_2NH[(2,6-(CH_3)_2C_6H_3]$	0.43	0.17	0.27
$-SO_2NH(2,3-Cl_2C_6H_3)$	0.50	0.26	0.31
$-SO_2NH(2,4-Cl_2C_6H_3)$	0.66	0.14	0.20
$-SO_2NH(2,5-Cl_2C_6H_3)$	0.65	0.38	0.51
$-SO_2NH(2,6-Cl_2C_6H_3)$	0.68	0.53	0.64
$-SO_2NH(3,4-Cl_2C_6H_3)$	0.68	0.28	0.56
Group	H-2,6	H-3,5	H-4
C ₆ H ₅ SO ₂ NH–	0.08	-0.12	-0.24
4-CH ₃ C ₆ H ₄ SO ₂ NH–	-0.07	-0.18	-0.22
$4-C_2H_5C_6H_4SO_2NH-$	-0.13	-0.18	-0.35
4-FC ₆ H ₄ SO ₂ NH–	-0.07	-0.19	-0.25
4-ClC ₆ H ₄ SO ₂ NH–	-0.10	-0.14	-0.23
4-BrC ₆ H ₄ SO ₂ NH–	-0.09	-0.17	-0.23

(CH₃)₂, 2,5-(CH₃)₂, 2,6-(CH₃)₂, 2,3-Cl₂, 2,4-Cl₂, 2,5-Cl₂, 2,6-Cl₂ or 3,4-Cl₂] were calculated by comparing the chemical shifts of these protons in $C_6H_5SO_2NH(i,j-X_2C_6H_3)$ with that of the benzene proton value of 7.29 ppm. The calculated values are shown in Table 5. Then the chemical shifts of the H-2',6' and H-3',5' protons in 4-X'C₆H₄SO₂NH(i,j-X₂C₆H₃) were calculated in two ways. In the first method (calc. 1) the chemical shifts of the H-2',6' and H-3',5' protons were calculated by adding the incremental shifts due to $-SO_2NH(i,j-X_2C_6H_3)$ [i,j- $X_2 = 2,3-(CH_3)_2, 2,4-(CH_3)_2, 2,5-(CH_3)_2, 2,6-(CH_3)_2,$ 2,3-Cl₂, 2,4-Cl₂, 2,5-Cl₂, 2,6-Cl₂ or 3,4-Cl₂] and the substituent X' (CH₃, C₂H₅, F, Cl or Br) (Table 5) to the benzene proton value of 7.29 ppm. In the second method (calc. 2) the chemical shifts of the H-2',6' and H-3',5' protons in 4-X'C₆H₄SO₂NH(i,j-X₂C₆H₃) were computed by adding the incremental shifts due to $-SO_2NH(i,j-X_2C_6H_3)$ [i,j-X₂= 2,3-(CH₃)₂, 2,4-(CH₃)₂, 2,5-(CH₃)₂, 2,6-(CH₃)₂, 2,3-Cl₂, 2,4-Cl₂, 2,5-Cl₂, 2,6-Cl₂ or 3,4-Cl₂] to the chemical shifts of the corresponding protons in substituted benzenes. The calculated chemical shifts by the two methods compared well with each other and with the experimental chemical shifts.

Similarly, the incremental shifts of H-2,6; H-3,5 and H-4 protons due to $4\text{-}X'C_6H_4SO_2NH$ - groups (X' = H, CH_3 , C_2H_5 , F, Cl or Br) in $4\text{-}X'C_6H_4SO_2NH(C_6H_5)$ were computed by comparing the chemical shifts of H-2,6; H-3,5 and H-4 protons in these compounds with the benzene proton value of 7.29 ppm. The com-

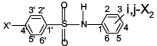


Table 6. Observed chemical shifts (δ, ppm) of aromatic and other carbon atoms in N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides.

2,4-(CH ₃) ₂ 136.2 131.5 131.8 132.2 127.4 125.2 137.0 127.3 128.4 149.8 28.8, 20.9, 17.2 2,5-(CH ₃) ₂ 137.1 125.2 128.4 127.3 136.8 - 130.5 127.0 128.2 149.9 28.9, 21.0, 17.2	2 6.	ь	0 0									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C-1	C-2	C-3	C-4	C-5	C-6	C-1'	C-2',6'	C-3',5'	C-4'	Alkyl C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						X' = H			•	•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,1 612	133.0	122.0	150.1	150.5		120.4	130.3	127.2	127.1	133.1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.3 (CH-)-	137.5	130.8		124.3			130.8	127.2	120.7	1/13 0	21.6.17.6
$ \begin{array}{c} 2.5 \cdot \text{C(H}_3)_2 & 136.9 & 127.2 & 129.6 & 125.1 & 136.7 & 125.1 & 130.5 & 127.0 & 128.2 & 143.7 & 21.6, 21.0, 17. \\ 2.6 \cdot \text{C(H}_3)_2 & 137.7 & 129.5 & 127.6 & 126.3 & 127.6 & 129.5 & 132.6 & 127.1 & 129.1 & 143.5 & 21.5, 20.7, 18. \\ 2.3 \cdot \text{Cl}_2 & 133.6 & 129.1 & 130.8 & 132.9 & 128.1 & 123.5 & 135.6 & 127.2 & 129.5 & 142.6 & 21.2 \\ 2.4 \cdot \text{Cl}_2 & 133.6 & 129.1 & 130.8 & 132.9 & 128.1 & 123.5 & 135.6 & 127.2 & 129.8 & 144.5 & 20.8 \\ 2.5 \cdot \text{Cl}_2 & 135.6 & 122.9 & 130.1 & 125.7 & 133.5 & 121.8 & 134.5 & 127.2 & 129.8 & 144.6 & 21.6 \\ 2.6 \cdot \text{Cl}_2 & 137.0 & 129.8 & 129.1 & 129.0 & 129.1 & 129.8 & 139.7 & 129.1 & 129.8 & 144.6 & 21.6 \\ 2.3 \cdot \text{CH}_3)_2 & 136.9 & 131.7 & 137.8 & 127.3 & 125.8 & 123.3 & 134.2 & 127.3 & 128.6 & 144.5 & 21.5 \\ 2.4 \cdot \text{C(H}_3)_2 & 136.9 & 131.7 & 137.8 & 127.3 & 125.8 & 123.3 & 134.2 & 127.3 & 128.4 & 149.8 & 28.8, 20.9, 17.2 \\ 2.5 \cdot \text{C(H}_3)_2 & 136.2 & 131.5 & 131.8 & 132.2 & 127.4 & 125.2 & 137.0 & 127.3 & 128.4 & 149.8 & 28.8, 20.9, 17.2 \\ 2.5 \cdot \text{C(H}_3)_2 & 137.1 & 125.2 & 128.4 & 127.3 & 136.8 & - & 130.5 & 127.0 & 128.2 & 149.9 & 28.9, 21.0, 17.2 \\ 2.5 \cdot \text{C(H}_3)_2 & 137.8 & 128.8 & 127.8 & 128.8 & 137.0 & 127.3 & 128.5 & 149.9 & 28.9, 21.0, 17.2 \\ 2.5 \cdot \text{C(L}_2 & 136.2 & 127.9 & 129.6 & 132.8 & 127.6 & 133.3 & 137.3 & 127.3 & 128.5 & 149.9 & 28.9, 18.7, 15.2 \\ 2.5 \cdot \text{Cl}_2 & 136.8 & 124.7 & 130.7 & 125.0 & 135.1 & 121.4 & 137.1 & 127.3 & 128.6 & 150.2 & 28.8, 15.2 \\ 2.5 \cdot \text{Cl}_2 & 136.8 & 124.7 & 130.7 & 125.0 & 135.1 & 121.4 & 137.1 & 127.5 & 128.8 & 149.3 & 28.6, 15.3 \\ 3.4 \cdot \text{Cl}_3 & 136.8 & 124.7 & 130.7 & 125.0 & 135.1 & 121.4 & 137.1 & 127.5 & 128.8 & 149.3 & 28.6, 15.3 \\ 3.4 \cdot \text{Cl}_3 & 136.8 & 124.7 & 130.7 & 125.0 & 135.1 & 121.4 & 137.1 & 127.5 & 128.8 & 149.3 & 28.6, 15.3 \\ 3.4 \cdot \text{Cl}_3 & 136.8 & 124.7 & 136.8 & 124.7 & 127.9 & 139.1 & 127.5 & 128.8 & 149.3 & 28.6, 15.3 \\ 3.4 \cdot \text{Cl}_3 & 136.8 & 124.7 & 136.8 & 124.7 & 126.9 & 130.0 & 136.8 & 129.9 & 116.1 & 166.9 & 20.9, 17.6 \\ 2.5 \cdot \text{C(H}_3)_2 & 135.8 & 131.1 & 130.0 & 132.5 & 135.7 & 125.6 $												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c} 2.3 - C. 1 \\ 2.4 - Cl_2 \\ 2.4 - Cl_2 \\ 2.4 - Cl_2 \\ 2.5 - Cl_3 \\ 2.5 - Cl_2 \\ 2.5 - Cl_3 \\ 2.5 - Cl_2 \\ 2.5 - Cl_3 \\ 2.5 - Cl_2 \\ 2.5 - Cl_3 \\ 2.5 - Cl_3$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		137.0	129.8	129.1	129.0	129.1	129.8	139.7	129.1		140.2	20.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,4-Cl ₂	136.3	122.5	135.3	130.8	129.9	120.1	133.0	127.2	128.6	144.5	21.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						$X' = C_2H_5$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.3-(CH ₂) ₂	136.9	131.7	137.8	127.3		123.3	134.2	127.3	128.4	149.7	28.7, 20.6, 15.1, 13.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												28.8, 20.9, 17.5, 15.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												28.9, 21.0, 17.1, 15.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							128.8					28.9, 18.7, 15.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,3-Cl ₂	139.8	127.5	133.5	129.0	129.2	120.6	137.9	127.0	129.0	141.4	20.5, 19.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,4-Cl ₂	136.2	127.9	129.6	132.8	127.6	133.3	137.3	127.3	128.9	149.5	39.5, 15.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,5-Cl ₂	136.8					121.4					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3,4-Cl_2$	136.8	121.5	133.0	132.3		119.6	138.1	127.1	128.6	149.7	28.4, 15.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						X' = F						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2,3-(CH_3)_2$	135.7	132.0	138.1	126.1	128.7	116.4	133.8	130.0	116.1	-	20.6, 13.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2,4-(CH_3)_2$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$3,4-Cl_{2}^{-}$ 135.3 121.4 137.5 130.6 129.7 119.5 131.9 129.5 116.0 166.3 - $X'=Cl$ $2,3-(CH_{3})_{2}$ 133.7 132.1 139.4 126.1 126.1 123.6 138.2 128.8 129.8 139.4 $20.7, 13.9$												
X' = CI 2,3-(CH ₃) ₂ 133.7 132.1 139.4 126.1 126.1 123.6 138.2 128.8 129.8 139.4 20.7, 13.9												
2,3-(CH ₃) ₂ 133.7 132.1 139.4 126.1 126.1 123.6 138.2 128.8 129.8 139.4 20.7, 13.9	3,4-C12	133.3	121.4	137.3	130.0		119.5	131.9	129.3	110.0	100.5	_
	2.3_(CH_)-	133.7	132.1	130 /	126.1		123.6	138.2	128 8	120 8	130 /	20.7 13.9
2,5-(CH ₃) ₂ 138.2 129.2 129.3 127.5 137.0 125.4 133.7 128.5 129.8 139.5 21.0, 17.1												
2.6-(CH ₃) ₂ 130.2 129.8 128.9 128.0 128.9 129.8 127.8 129.8 128.6 129.3 137.8 128.6 129.3 139.2 18.8												
2,3-Cl ₂ 132.2 129.2 128.8 - 128.8 129.2 - 128.8 129.2 140.2 -												
2,4-Cl ₂ 135.7 129.2 129.3 132.4 127.8 123.9 138.7 128.7 129.9 139.1 -												
2,5-Cl ₂ 134.7 127.3 130.4 127.8 132.7 122.6 138.4 129.0 129.6 144.7 -												_
2,6-Cl ₂ 139.5 129.5 128.2 129.0 128.2 129.5 141.9 128.2 129.9 142.2 -												_
$3,4-\text{Cl}_2^{-}$ 137.1 121.8 137.7 132.3 130.5 120.2 138.9 128.3 129.5 139.5 -		137.1	121.8	137.7	132.3	130.5	120.2	138.9	128.3	129.5	139.5	-
X' = Br						X' = Br						
2,3-(CH ₃) ₂ 134.0 131.7 137.6 126.1 125.3 121.1 138.4 128.3 132.6 128.5 20.2, 13.6	2,3-(CH ₃) ₂	134.0	131.7	137.6	126.1	125.3	121.1	138.4	128.3	132.6	128.5	20.2, 13.6
2,4-(CH ₃) ₂ 132.7 131.6 131.1 136.7 127.5 125.5 138.7 129.1 132.2 127.5 20.9, 17.6	, , , ,,,,											
2,5-(CH ₃) ₂ 136.8 129.1 130.7 127.9 133.7 125.5 138.7 128.6 132.8 127.5 21.0, 17.2												
2,6-(CH ₃) ₂ 137.8 129.2 129.0 128.2 129.0 129.2 139.7 128.8 132.8 127.9 18.6												
2,3-Cl ₂ 134.7 132.5 133.3 126.9 128.7 120.4 137.8 129.2 132.7 127.9 -	2,3-Cl ₂		132.5	133.3			120.4	137.8				-
2,4-Cl ₂ 133.1 129.3 128.6 132.7 127.3 123.2 139.3 129.8 132.1 128.0 -		133.1	129.3	128.6	132.7	127.3	123.2	139.3			128.0	-
2,5-Cl ₂ 138.8 126.1 130.3 126.8 132.5 – 139.7 128.9 131.9 128.3 –												
2,6-Cl ₂ 132.7 129.3 127.6 128.0 127.6 129.3 140.3 128.8 132.4 128.4 -	, =											
3,4-Cl ₂ 133.1 122.3 133.3 132.5 129.5 120.2 137.7 129.0 131.6 128.0 -	3,4-Cl ₂	133.1	122.3	133.3	132.5	129.5	120.2	137.7	129.0	131.6	128.0	

puted incremental shifts are shown in Table 5. Then the chemical shifts of the protons in the substituted compounds 4-X'C₆H₄SO₂NH(i,j-X₂C₆H₃) were also calculated in two ways (calc. 3 and 4). In method 3, the proton chemical shifts were calculated by adding the incremental shifts due to $4-X'C_6H_4SO_2NH-(X'=H,$ CH₃, C₂H₅, F, Cl or Br) (Table 5) and the substituents i,j-X₂ [2,3-(CH₃)₂, 2,4-(CH₃)₂, 2,5-(CH₃)₂, 2,6-(CH₃)₂, 2,3-Cl₂, 2,4-Cl₂, 2,5-Cl₂, 2,6-Cl₂ or 3,4-Cl₂ [19, 20] to the benzene proton chemical shift of 7.29 ppm. In the other method (calc. 4) the chemical shifts of protons were calculated by adding the incremental shifts due to 4-X'C₆H₄SO₂NH- groups $(X' = H, CH_3, C_2H_5, F, Cl \text{ or Br})$ (Table 5) to the corresponding proton chemical shifts of the disubstituted benzenes. The agreement between the two sets of calculated chemical shifts and the experimental values showed that the two procedures of calculation lead to almost the same values in most cases, thereby testing the validity of the principle of additivity of substituent effects in these compounds.

The effect of substitution on the chemical shifts of the aromatic protons in N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides have been analysed in terms of line diagrams (figures not shown). These plots have indicated that there are no particular trends in the variation of the chemical shifts with the nature of substitution, either electron withdrawing or electron donating groups. The variation of the chemical shifts of the N-H proton with substitution also did not show regular trends.

3.3. ¹³C NMR Spectra

The ¹³C chemical shifts of aromatic and alkyl carbon atoms of all the N-(i,j-disubstituted phenyl)-4substituted benzenesulphonamides are shown in Table 6. The various chemical shifts are assigned to the different carbon atoms in the two benzene rings in conformity with the literature for similar compounds [5, 14, 15, 19-25]. The ¹³C chemical shifts of benzene and substituted benzenes were also measured under identical conditions. Further, the incremental shifts of C-1'; C-2',6'; C-3',5' and C-4' carbon atoms due to $-SO_2NH(i,j-X_2C_6H_3)$ groups in $C_6H_5SO_2NH(i,j-X_6H_3)$ X₂C₆H₃) were calculated by comparing the chemical shifts of the carbon atoms in these compounds with those of benzene carbon value of 128.4 ppm. Similarly, the incremental shifts of C-1; C-2,6; C-3,5 and C-4 carbon atoms due to 4-X'C₆H₄SO₂NH-

Table 7. Incremental shifts (in ppm) of aromatic carbon atoms due to $-SO_2NH(i,j-X_2C_6H_3)$ groups in $C_6H_5SO_2NH(i,j-X_2C_6H_3)$ and $4-X'C_6H_4SO_2NH-$ groups in $p-X'C_6H_4SO_2NH(C_6H_5)$.

Group	C-1'	C-2',6'	C-3',5'	c-4'
-SO ₂ NHC ₆ H ₅	10.40	-0.80	0.90	4.90
$-SO_2NH(2-CH_3C_6H_4)$	11.30	-1.50	0.60	3.40
$-SO_2NH(3-CH_3C_6H_4)$	11.00	-0.70	0.60	4.90
$-SO_2NH(4-CH_3C_6H_4)$	10.70	-0.70	0.90	5.30
$-SO_2NH(2-ClC_6H_4)$	10.40	-1.20	1.00	4.90
$-SO_2NH(3-ClC_6H_4)$	10.40	-1.40	0.60	4.60
$-SO_2NH(4-ClC_6H_4)$	10.70	-0.50	1.00	5.00
$-SO_2NH[2,3-(CH_3)_2C_6H_3]$	11.30	-1.10	0.60	4.90
$-SO_2NH[2,4-(CH_3)_2C_6H_3]$	11.30	-1.30	0.60	4.10
$-SO_2NH[2,5-(CH_3)_2C_6H_3]$	4.80	-1.30	0.90	4.50
$-SO_2NH[2,6-(CH_3)_2C_6H_3]$	12.30	-1.20	0.40	4.50
$-SO_2NH(2,3-Cl_2C_6H_3)$	10.30	-1.20	0.80	4.70
$-SO_2NH(2,4-Cl_2C_6H_3)$	13.0	-1.00	0.80	6.30
$-SO_2NH(2,5-Cl_2C_6H_3)$	13.0	-1.30	0.80	4.80
$-SO_2NH(2,6-Cl_2C_6H_3)$	13.1	-0.70	0.90	4.90
$-SO_2NH(3,4-Cl_2C_6H_3)$	9.90	-1.20	0.70	4.70
Group	C-1	C-2,6	C-3,5	C-4
C ₆ H ₅ SO ₂ NH–	8.10	-6.90	0.60	-3.20
4-CH ₃ C ₆ H ₄ SO ₂ NH-	8.80	-6.70	1.00	-3.00
$4-C_2H_5C_6H_4SO_2NH-$	9.40	-7.90	1.20	-2.50
4-FC ₆ H ₄ SO ₂ NH–	7.90	-6.70	1.0	-2.80
4-ClC ₆ H ₄ SO ₂ NH–	7.70	-6.80	0.70	-2.90
4-BrC ₆ H ₄ SO ₂ NH–	7.60	-6.80	0.10	-2.90

groups in 4-X'C₆H₄SO₂NH(C₆H₅) were computed by comparing the chemical shifts of the carbon atoms in these compounds with the benzene carbon value of 128.4 ppm. The calculated incremental shifts of C-1'; C-2',6'; C-3',5' and C-4' carbon atoms due to -SO₂NH(i,j-X₂C₆H₃) groups in C₆H₅SO₂NH(i,j-X₂C₆H₃) and those of C-1; C-2,6; C-3,5 and C-4 carbon atoms due to 4-X'C₆H₄SO₂NH- groups in 4-X'C₆H₄SO₂NH(C₆H₅) are shown in Table 7.

These incremental shifts due to the above groups (Table 7) and those of the substituents [19, 20] were used to calculate the chemical shifts of C-1'; C-2',6'; C-3',5' and C-4' and those of C-1, C-2, C-3, C-4, C-5 and C-6 carbon atoms in the substituted compounds 4-X'C₆H₄SO₂NH(i,j-X₂C₆H₃) by methods similar to the ones described under ¹H NMR spectra. The calculated shifts have also revealed that the different procedures of calculation lead to almost the same values in most cases, indicating the validity of the principle of additivity of the substituent effects with ¹³C chemical shifts.

The effect of substitution on the chemical shifts of the aromatic carbon atoms in N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides have also been analysed through line diagrams (figures not

shown). There are no particular trends in the variation of these chemical shifts with the substitution.

Acknowledgement

The authors are grateful to the Nuclear Power Corporation of India Limited (NPCIL), Govt. of India,

- Mumbai, for a Project Research Fellowship to MS and thank the Sophisticated Analytical Instrumentation Facility, Punjab University, Chandigarh-160014, India, for the ¹H and ¹³C NMR spectral measurements.
- B. T. Gowda and D. S. Mahadevappa, Talanta 30, 359 (1983).
- [2] B.T. Gowda and D.S. Mahadevappa, J. Chem. Soc. Perkin Trans. 2, 323 (1983).
- [3] B. T. Gowda, B. S. Sherigara, and D. S. Mahadevappa, Microchem. J. 34, 103 (1986).
- [4] B. T. Gowda, J. D. D'Souza, and K. R. Bhat, J. Indian Chem. Soc. 78, 412 (2002).
- [5] B. T. Gowda, K. Jyothi, and J. D. D'Souza, Z. Naturforsch. 57a, 967 (2002).
- [6] B.T. Gowda, J.D. D'Souza, and B.H. A. Kumar, Z. Naturforsch. 58a, 51 (2003).
- [7] B. T. Gowda, J. D. D'Souza, and H. Fuess, Z. Naturforsch. 58a, 220 (2003).
- [8] B. T. Gowda, and K. M. Usha, Z. Naturforsch. 58a, 351 (2003).
- [9] B. T. Gowda, K. Jyothi, and N. Damodara, Z. Naturforsch. 58a, 563 (2003).
- [10] B. T. Gowda, K. Jyothi, J. Kožíšek, and H. Fuess, Z. Naturforsch. 58a, 656 (2003).
- [11] B. T. Gowda, K. L. Jayalakshmi, and K. Jyothi, Z. Naturforsch. 58b, 787 (2003).
- [12] B. T. Gowda and B. H. A. Kumar, Oxid. Commun. 26, 403 (2003).
- [13] K. Jyothi and B. T. Gowda, Z. Naturforsch. 59a, 64 (2004).

- [14] B. T. Gowda, K. L. Jayalakshmi, and M. Shetty, Z. Naturforsch. 59a, 239 (2004).
- [15] K. L. Jayalakshmi and B. T. Gowda, Z. Naturforsch. 59a, 491 (2004).
- [16] M. Shetty and B. T. Gowda, Z. Naturforsch. 59b, 63 (2004).
- [17] B. T. Gowda and M. Shetty, J. Phys. Org. Chem. 17, 848 (2004).
- [18] B. T. Gowda, M. Shetty, and K. L. Jayalakshmi, Z. Naturforsch. 60a, 106 (2005).
- [19] R. M. Silverstein, G. C. Bassler, and T. C. Morrill, Spectrometric Identification of Organic Compounds, John Wiley and Sons, New York 1991.
- [20] W. Kemp, Organic Spectroscopy; MacMillan, London 1996.
- [21] M. Goldstein, M. A. Russell, and H. A. Willis, Spectrochim. Acta 25A, 1275 (1969).
- [22] D. E. Ewing, Org. Magn. Reson. 12, 499 (1979).
- [23] A. M. Hakkinen, P. Ruostesuo, and R. Kivekas, J. Chem. Soc. Perkin Trans. 2, 815 (1988).
- [24] R. Minkwitz, P. Garzarek, and H. Preut, Z. Naturforsch. 52b, 88 (1997).
- [25] E. Kolehmainen, H. Janota, R. Gawinecki, K. Laihia, and R. Kauppinen, Magn. Reson. Chem. **38**, 384 (2000).